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Motivation
Part I: Geodesic convexity

Part II: Benign Landscapes

Based on:

* "Negative curvature obstructs acceleration for strongly geodesically convex optimization” - C & Boumal - COLT’22
e “Curvature and Complexity: Better lower bounds for geodesically convex optimization” - C & Boumal - COLT’23
« “Synchronization on circles and spheres with nonlinear interactions” - C, Rebjock, McRae, Boumal - under review

* “The sensor network localization problem has benign landscape under mild rank relaxation” - C, Rebjock, McRae,
Boumal - not yet public



Motivation
min f(x)

Optimization is fundamental in many areas



Motivation
min f(x)
Optimization is fundamental in many areas

Success story: optimization in R%



Motivation
min f(x)
Optimization is fundamental in many areas
Success story: optimization in R%

But many problems are not convex!



Motivation
min f(x)
Optimization is fundamental in many areas
Success story: optimization in R%
But many problems are not convex!

Goal of thesis: beyond convex optimization in R%?



Motivation

Goal of thesis: beyond convex optimization in R%?



Motivation

Goal of thesis: beyond convex optimization in R%?

Q1. Special structure in nonconvex problems?

/ \W\J | M /\\/\\/\Mﬂ /

General nonconvex optimization is hard!



Motivation

Goal of thesis: beyond convex optimization in R%?
Q1. Special structure in nonconvex problems?

Q2. Algorithms and how much computational resources?



Motivation

Goal of thesis: beyond convex optimization in R%?
Q1. Special structure in nonconvex problems?
Q2. Algorithms and how much computational resources?

Q3. Fundamental limits?



Motivation

Goal of thesis: beyond convex optimization in R%?

Q1. Special structure in nonconvex problems?
Q2. Algorithms and how much computational resources?
Q3. Fundamental limits?



Motivation

Goal of thesis: beyond convex optimization in R%?

Q1. Special structure in nonconvex problems?
Q2. Algorithms and how much computational resources?
Q3. Fundamental limits?

Thesis focuses on 2 special structures:
I. - Q2 and Q3
I1. - Q1 (and Q2)



Motivation

Goal of thesis: beyond convex optimization in R%?

Q1. Special structure in nonconvex problems?
Q2. Algorithms and how much computational resources?
Q3. Fundamental limits?

Thesis focuses on 2 special structures:
I. - Q2 and Q3
1. - Q1 (and Q2)



Part I: Geodesic convexity

Example: robust covariance estimation



Part I: Geodesic convexity

Example: robust covariance estimation

iid samples y4, ..., ¥, € R? from centered Gaussian with covariance X*



Part I: Geodesic convexity

Example: robust covariance estimation

iid samples y4, ..., ¥, € R? from centered Gaussian with covariance X*

Vi
|yl

Normalize: x; =

Target: estimate X* given only x4, ..., X,y



Part I: Geodesic convexity

Example: robust covariance estimation

iid samples y4, ..., ¥, € R? from centered Gaussian with covariance X*

Vi
|yl

Normalize: x; =

Target: estimate X* given only x4, ..., X,y

, aka Tyler’s M-estimator:

¥ = argmin zlo x| X7 1x;
¥>0, det(Z) 1m g( )



Part I: Geodesic convexity

Example: robust covariance estimation

iid samples y4, ..., ¥, € R? from centered Gaussian with covariance X*

Vi
|yl

Normalize: x; =

Target: estimate X* given only x4, ..., X,y

, aka Tyler’s M-estimator:

¥ = argmin zlo x| X7 1x;
¥>0, det(Z) 1m g( )

Nonconvex!



Part I: Geodesic convexity

Example: robust covariance estimation

iid samples y4, ..., ¥, € R? from centered Gaussian with covariance X*

Vi
|yl

Normalize: x; =

Target: estimate X* given only x4, ..., X,y

, aka Tyler’s M-estimator:
¥ = argmin zlo x| X7 1x;
%>0, det(Z) 1m g( )

Nonconvex! Sources: Tyler, Weisel &
_ Zhang, Franks & Moitra, etc.
But on a Hadamard manifold!
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Geodesically convex optimization

min f(x)

XEDCM

D is a g-convex subset of a Riemannian manifold M

For each x,y € D, there is a unique minimizing geodesic t = y(t) contained
in D, connecting x, y.

Cost f is p-strongly g-convex:
te fy®)

is u-strongly convex for any geodesic y in D.
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Complexity of g-convex optim

Our focus: What is the of g-convex optimization?
Complexity (i.e., min # of oracle calls) depends on parameters:
* Accuracy

e Curvature term

Main result: At least ((¢) oracle calls are needed to find x such that

1
FO) = < 15 (FGrred) = £)

Why? Builds on Hamilton & Moitra '20

Why important? Consequences?
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Main result: At least Q(¢) = (r |K I) oracle calls are needed to find x such that
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K=0 K<O0
Constant
curvature: Euclidean space R? Hyperbolic space H%
(K = —1)
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Complexity of g-convex optim

Main result: At least Q(¢) = (r |K I) oracle calls are needed to find x such that

FOO) = F* < 7o (f o) = £

Geodesic ball volumes grow much faster in negatively curved spaces than flat spaces.

Curvature measures how quickly geodesics diverge

In negatively curved spaces, ,and so a small error can blow up quickly

<:
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2. Rules out full Nesterov acceleration in negatively curved spaces

. . 1 .
Riem GD has complexity O (Z)’ which seems to match convex counterpart
: . . . 1
[s there a Riem acceleration scheme with complexity O (ﬁ)?

Zhang & Sra; Ahn & Sra; Alimisis, Orvieto, Lucchi; Martinez-Rubio; Kim & Yang; etc.
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Complexity of g-convex optim

Main result: At least Q(¢) = Q (r IKI) oracle calls are needed to find x such that

1
fx)—f" Sm(f(xref) - f")

1. Explains why all known upper bounds worsen with curvature (e.g.,, Zhang & Sra ‘16)
2. Rules out full Nesterov acceleration in negatively curved spaces

Scaling problems
* Encompass range of applications in stats, quantum, TCS

* For tensor scaling (and others), radius 7 is in input size (Franks &
Reichenbach’21) - so lower bound points to difficulty of finding poly-time algos

Birgisser, Franks, Garg, Oliveira, Walter, Wigderson '21
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* Bounds depending on both ¢ and

* Other problem classes.

g-convex setting Lower bound Upper bound Algorithm
(P1) Lipschitz, lo- Q +d) 0({d) Center of gravity
dim (Criscitiello, et al. "23)
(P2) Lipschitz ale + 1 0 ¢ Subgradient descent
¢ {2¢e? €2 (Zhang & Sra'16)

(P3) Smooth ~ 1 N RNAG-C (Kim & Yang'22 /

Q¢+ G 0 ( /e Martinez-Rubio et al’22)
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Cutting-planes Qd) 0({d) Center of gravity
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(Criscitiello, et al. '23)
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Much more in thesis!

* Bounds depending on both ¢ and

* Other problem classes.

Matching upper and

lower bounds?

g-convex setting Lower bound Upper bound Algorithm
(P1) Lipschitz, lo- Q +d) 0({d) Center of gravity
dim (Criscitiello, et al. "23)
(P2) Lipschitz ale + 1 0 ¢ Subgradient descent
¢ {2¢e? €2 (Zhang & Sra'16)

(P3) Smooth ~ 1 N RNAG-C (Kim & Yang'22 /
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(P4) Smooth, Q + V) 0(\/tk) RNAG-SC (Kim & Yang'22
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Cutting-planes Qd) 0({d) Center of gravity

game

(Criscitiello, et al. '23)

Q (i) lower bound for subgradient descent (with Polyak step size)
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Part II: Benign landscapes

Goal of thesis: beyond convex optimization in R%?

Q1. Special structure in nonconvex problems?
Q2. Algorithms and how much computational resources?
Q3. Fundamental limits?

Thesis focuses on 2 special structures:
I. - Q2 and Q3
I1. - Q1 (and Q2)



Benign landscape
min f (x)
Some problems are g-convex, but many are not!

Need a more general structure!
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Stable manifold theorems
+

Lojasiewicz theorem
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Benign landscape
min f(x)

xER4A

Definition: f has a benign landscape if all 2-critical points are optimal:

Vi(x) =0and V?f(x) = 0 implies x is a global min

(strict)
saddle points
are unstable!

Part Il of thesis:

Understand when several problems have benign
landscape. With an eye towards new tools.

Our focus next: sensor network localization
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The problem: SNL

n unknown points z{, z5, ..., Z,, in R,

Know a subset of the pairwise distances (measurements)
dij = |lz; — z; || forij € E.

Goal: recover the n points (up to translation & rotation)

— Torgerson '58, Shepard ‘62

Applications in robotics, determining
molecular conformations, data analysis

65
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] 2 2 k k
min 2 (”Zi — Zj” — dl-zj) ) dij = |lz; —z||
ijEE
{ —
OVer Zy,Zy, «.,Zy € ’ _A _____

Relax to dimension k > £ 0.8

, 0.

E .
Experiment: % 0.6 Connectivity
* n = 50,¢ = dimension = 2 § 0.4 -
* Ground truth =iid Gaussian points 0.9 4
* Graph =ER
e Run TR from random initialization 0 012 0f4 of6 0?8 1

Erdos—Rényi density
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<
N
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Optimization problem
min z (”Zi - Zj”2 — dizj)z : dij = |lz; — z ||
ijJEE

OVEr Z1,Zy, .., Zy €

Relax to dimension k > ¢

Want k small as possible! New problem has kn variables

If k = n — 1, landscape 1S benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024)

Can we do better? Our focus: (nearly) all distances known.

Landscape for s-stress and its relaxations unknown
even in this simplest of cases!
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2
min Z (llz - 5] - a3) dyy = Izt — 7|

ijEE
Example over z4,Zo, ..., Zy € R? “s.stress”
s-stress can have spurious strict local minima, with complete graph
Ground truth z{, z5, ... Spurious configuration z4, z,, ...
® @
® ® ® o ® -0 ——— @ ———— @ ——— @ —
o

Optimize over points in R?

81
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Results

First nontrivial landscape results for SNL

New mathematical techniques needed to prove benign landscape.
=»Beyond the Restricted Isometry Property

Another instance where are successful,
empirically and theoretically (ZZ/orthogonal synchron: McRae/Boumal/Bandeira/...’16°23 ’24).

Provides a theoretical foundation for more sophisticated localization problems.

Going forward: tools for proving benign landscapes?
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