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Outline

Motivation

Part I: Geodesic convexity

Part II: Benign Landscapes

Based on:

• "Negative curvature obstructs acceleration for strongly geodesically convex optimization” - C & Boumal – COLT’22

• “Curvature and Complexity: Better lower bounds for geodesically convex optimization” - C & Boumal – COLT’23

• “Synchronization on circles and spheres with nonlinear interactions” - C, Rebjock, McRae, Boumal - under review

• “The sensor network localization problem has benign landscape under mild rank relaxation” - C, Rebjock, McRae, 

Boumal – not yet public
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Motivation

   min
𝑥∈ℳ

𝑓 𝑥

Optimization is fundamental in many areas

Success story: convex optimization in ℝ𝑑

But many problems are not convex!

Goal of thesis: beyond convex optimization in ℝ𝑑?
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Part I: Geodesic convexity
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Example: robust covariance estimation

iid samples 𝑦1, … , 𝑦𝑚 ∈ ℝ𝑑  from centered Gaussian with covariance Σ∗ 

Normalize: 𝑥𝑖 =
𝑦𝑖

𝑦𝑖

Target: estimate Σ∗ given only 𝑥1, … , 𝑥𝑚

MLE, aka Tyler’s M-estimator:

෠Σ = argmin
Σ≻0, det Σ =1

𝑑

𝑚
෍

𝑖=1

𝑚

log 𝑥𝑖
⊤Σ−1𝑥𝑖

Nonconvex!

But geodesically convex on a Hadamard manifold!
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iid samples 𝑦1, … , 𝑦𝑚 ∈ ℝ𝑑  from centered Gaussian with covariance Σ∗ 

Normalize: 𝑥𝑖 =
𝑦𝑖
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෍
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𝑚
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Nonconvex!

But geodesically convex on a Hadamard manifold!

Sources: Tyler, Weisel & 
Zhang, Franks & Moitra, etc.



Geodesically convex optimization

min
𝑥∈𝐷⊂ℳ

𝑓 𝑥

𝐷 is a g-convex subset of a Riemannian manifold ℳ:

For each 𝑥, 𝑦 ∈ 𝐷, there is a unique minimizing geodesic 𝑡 ↦ 𝛾(𝑡) contained 
in 𝐷, connecting 𝑥, 𝑦.

Cost 𝑓 is 𝜇-strongly g-convex: 
𝑡 ↦ 𝑓 𝛾 𝑡

 is 𝜇-strongly convex for any geodesic 𝛾 in 𝐷.
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Complexity of g-convex optim
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Our focus: What is the query complexity of g-convex optimization?

Computational task:

• ℳ is hyperbolic space of constant curvature 𝐾 < 0

• 𝑓 has a unique minimizer 𝑥∗ in 𝐵 = 𝐵 𝑥ref, 𝑟

• 𝑓 has some regularity (e.g., 1-Lipschitz/1-smooth)

You can query an oracle at 𝑥 to get 𝑓(𝑥), ∇𝑓(𝑥) 

Task: find a point 𝑥 with accuracy 𝜖:
𝑓 𝑥 − 𝑓∗ ≤ 𝜖

Least number of oracle queries necessary?
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Our focus: What is the query complexity of g-convex optimization?

Complexity (i.e., min # of oracle calls) depends on two parameters:

• Accuracy 𝜖

• Curvature term 𝜁: = 1 + 𝑟 𝐾

Main result: At least ෩Ω 𝜁  oracle calls are needed to find 𝑥 such that

𝑓 𝑥 − 𝑓∗ ≤
1

100
𝑓 𝑥ref − 𝑓∗
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Main result: At least ෩Ω 𝜁 = ෩Ω 𝑟 𝐾  oracle calls are needed to find 𝑥 such that

𝑓 𝑥 − 𝑓∗ ≤
1

100
𝑓 𝑥ref − 𝑓∗

Why important?  Consequences?

1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra ‘16)

2. Rules out full Nesterov acceleration in negatively curved spaces

 Riem GD has complexity 𝑂
1

𝜖
, which seems to match convex counterpart

 Is there a Riem acceleration scheme with complexity 𝑂
1

𝜖
?  No

Zhang & Sra; Ahn & Sra; Alimisis, Orvieto, Lucchi; Martinez-Rubio; Kim & Yang; etc.  
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3. Scaling problems 

• Encompass range of applications in stats, quantum, TCS

• For tensor scaling (and others), radius 𝑟 is exponentially large in input size (Franks & 
Reichenbach’21) – lower bound points to difficulty of finding poly-time algos

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson '21
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Reichenbach’21) – lower bound points to difficulty of finding poly-time algos

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson '21
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Main result: At least ෩Ω 𝜁 = ෩Ω 𝑟 𝐾  oracle calls are needed to find 𝑥 such that

𝑓 𝑥 − 𝑓∗ ≤
1

100
𝑓 𝑥ref − 𝑓∗

Why important?  Consequences?

1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra ‘16)

2. Rules out full Nesterov acceleration in negatively curved spaces

3. Scaling problems 

• Encompass range of applications in stats, quantum, TCS

• For tensor scaling (and others), radius 𝑟 is exponentially large in input size (Franks & 
Reichenbach’21) – so lower bound points to difficulty of finding poly-time algos

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson '21
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Much more in thesis!

• Bounds depending on both 𝜖 and 𝜁.

• Other problem classes.

Open question:

Matching upper and 

lower bounds?



Part II: Benign landscapes

Goal of thesis: beyond convex optimization in ℝ𝑑?

Q1.  Special structure in nonconvex problems?

Q2.  Algorithms and how much computational resources?

Q3.  Fundamental limits?

Thesis focuses on 2 special structures:

I.  Geodesic convexity – Q2 and Q3

II.  Benign landscapes – Q1 (and Q2)
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Benign landscape

   min
𝑥∈ℝ𝑑

𝑓 𝑥

Some problems are g-convex, but many are not!

Need a more general structure!

52



Benign landscape
min
𝑥∈ℝ𝑑

𝑓 𝑥

Definition: 𝑓 has a benign landscape if all 2-critical points are optimal:

∇𝑓 𝑥 = 0 and ∇2𝑓 𝑥 ≽ 0  implies 𝑥 is a global min

Goal: Show all 2-critical points 𝑥 are global minima.
Benign 

landscape
spurious 
local min

Bad 
landscape
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Benign landscape
min
𝑥∈ℝ𝑑

𝑓 𝑥

Definition: 𝑓 has a benign landscape if all 2-critical points are optimal:

∇𝑓 𝑥 = 0 and ∇2𝑓 𝑥 ≽ 0  implies 𝑥 is a global min

Why useful?

Local algorithm (GD, TR, …) will converge to 2-critical point (w/ prob 1)

Goal of landscape analysis: 

Show all 2-critical points 𝑥 are global minima.ow all 2-critical points 𝑥 are global mi
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Stable manifold theorems

+
Łojasiewicz theorem
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Understand when several problems have benign 
landscape.  With an eye towards new tools.

Our focus next: sensor network localization
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The problem: SNL
𝑛 unknown points 𝑧1

∗, 𝑧2
∗, … , 𝑧𝑛

∗  in ℝℓ.

Know a subset of the pairwise distances (measurements)

𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖ for 𝑖𝑗 ∈ 𝐸.

Goal: recover the 𝑛 points (up to translation & rotation)
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Applications in robotics, determining 
molecular conformations, data analysis



Optimization problem

min ෍

𝑖𝑗∈𝐸

𝑧𝑖 − 𝑧𝑗
2

− 𝑑𝑖𝑗
2

2

,  𝑑𝑖𝑗 =  ‖𝑧𝑖
∗ − 𝑧𝑗

∗‖

  over 𝑧1, 𝑧2, … , 𝑧𝑛 ∈ ℝℓ

Helps to relax to dimension 𝑘 > ℓ

Minimizer of relaxed problem same as original?

Yes if graph is complete (or more generally if it is universally rigid)

Want 𝑘 small; new problem has 𝑘𝑛 variables
If 𝑘 = 𝑛 − 1, landscape is benign (later)
Can we do better?
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Experiment:

• 𝑛 = 50, ℓ = dimension = 2

• Ground truth = iid Gaussian points

• Graph = ER

• Run TR from random initialization
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Connectivity
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Optimization problem

min ෍
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Theoretical explanation?

Want 𝑘 small; new problem has 𝑘𝑛 variables

If 𝑘 = 𝑛 − 1, easy to see landscape is benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 

2024)

Can we do better?
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Our focus: (nearly) all distances known.
Landscape for s-stress and its relaxations unknown 
even in this simplest of cases!



Results
Theorem [relaxation is necessary]: If 𝑘 = ℓ (no relaxation), landscape may 
be non-benign even if graph is complete.

Theorem [arbitrary GT]: If graph is complete and relax to
𝑘 ≈ ℓ + 𝑛ℓ,

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are 
isotropic* and iid, and relax to

𝑘 ≈ ℓ + log 𝑛 ,

then every 2-critical point is the ground truth, w.h.p.
76

Also see:
Song, Goncalves, Jung, 

Lavor, Mucherino, 
Wolkowicz, 2024
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Why?  
Why important?



Example
s-stress can have spurious strict local minima, with complete graph

Ground truth 𝑧1
∗, 𝑧2

∗, …   Spurious configuration 𝑧1, 𝑧2, …

Set of ground truths with spurious local minima has positive measure
80



Example
s-stress can have spurious strict local minima, with complete graph

Ground truth 𝑧1
∗, 𝑧2

∗, …   Spurious configuration 𝑧1, 𝑧2, …

Optimize over points in ℝ𝟑

81



Results
Why important?

First nontrivial landscape results for SNL

New mathematical techniques needed to prove benign landscape.

➔Beyond the Restricted Isometry Property

Another instance where low-dimensional nonconvex relaxations are successful, 
empirically and theoretically (Z2/orthogonal synchron: McRae/Boumal/Bandeira/… ’16 ’23 ’24).

Provides a theoretical foundation for more sophisticated localization problems.

Going forward: tools for proving benign landscapes?
82
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