On the Complexity of Optimization: Curved Spaces and Benign Landscapes

PhD Oral Exam

Candidate: Christopher Criscitiello

Advisor: Nicolas Boumal

OPTIM, Chair of Continuous Optimization

Outline

Motivation

Part I: Geodesic convexity

Part II: Benign Landscapes

Outline

Motivation

Part I: Geodesic convexity

Part II: Benign Landscapes

Based on:

- "Negative curvature obstructs acceleration for strongly geodesically convex optimization" C & **Boumal** COLT'22
- "Curvature and Complexity: Better lower bounds for geodesically convex optimization" C & **Boumal** COLT'23
- "Synchronization on circles and spheres with nonlinear interactions" C, **Rebjock, McRae, Boumal** under review
- "The sensor network localization problem has benign landscape under mild rank relaxation" C, **Rebjock, McRae, Boumal** not yet public

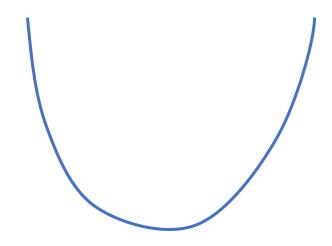
$$\min_{x \in \mathcal{M}} f(x)$$

Optimization is fundamental in many areas

$$\min_{x \in \mathcal{M}} f(x)$$

Optimization is fundamental in many areas

Success story: convex optimization in \mathbb{R}^d

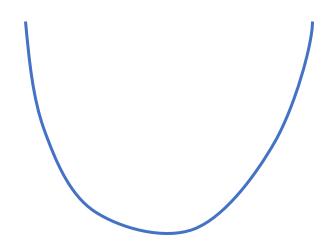


$$\min_{x \in \mathcal{M}} f(x)$$

Optimization is fundamental in many areas

Success story: convex optimization in \mathbb{R}^d

But many problems are not convex!



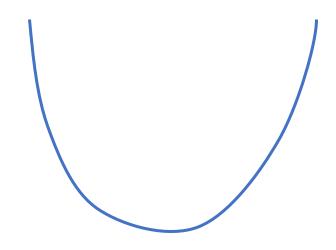
$$\min_{x \in \mathcal{M}} f(x)$$

Optimization is fundamental in many areas

Success story: convex optimization in \mathbb{R}^d

But many problems are not convex!

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?



Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

Q1. Special structure in nonconvex problems?

General nonconvex optimization is hard!

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

Q1. Special structure in nonconvex problems?

Q2. Algorithms and how much computational resources?

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

Q1. Special structure in nonconvex problems?

Q2. Algorithms and how much computational resources?

Q3. Fundamental limits?

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

- Q1. Special structure in nonconvex problems?
- Q2. Algorithms and how much computational resources?
- Q3. Fundamental limits?

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

- Q1. Special structure in nonconvex problems?
- Q2. Algorithms and how much computational resources?
- Q3. Fundamental limits?

Thesis focuses on 2 special structures:

- I. Geodesic convexity Q2 and Q3
- II. Benign landscapes Q1 (and Q2)

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

- Q1. Special structure in nonconvex problems?
- Q2. Algorithms and how much computational resources?
- Q3. Fundamental limits?

Thesis focuses on 2 special structures:

- I. Geodesic convexity Q2 and Q3
- II. Benign landscapes Q1 (and Q2)

Example: robust covariance estimation

Example: robust covariance estimation

iid samples $y_1, ..., y_m \in \mathbb{R}^d$ from centered Gaussian with covariance Σ^*

Example: robust covariance estimation

iid samples $y_1, ..., y_m \in \mathbb{R}^d$ from centered Gaussian with covariance Σ^*

Normalize: $x_i = \frac{y_i}{\|y_i\|}$

Target: estimate Σ^* given only x_1, \dots, x_m

Example: robust covariance estimation

iid samples $y_1, ..., y_m \in \mathbb{R}^d$ from centered Gaussian with covariance Σ^*

Normalize: $x_i = \frac{y_i}{\|y_i\|}$

Target: estimate Σ^* given only x_1, \dots, x_m

MLE, aka Tyler's M-estimator:

$$\widehat{\Sigma} = \underset{\Sigma > 0, \ \det(\Sigma) = 1}{\operatorname{argmin}} \frac{d}{m} \sum_{i=1}^{m} \log(x_i^{\mathsf{T}} \Sigma^{-1} x_i)$$

Example: robust covariance estimation

iid samples $y_1, ..., y_m \in \mathbb{R}^d$ from centered Gaussian with covariance Σ^*

Normalize: $x_i = \frac{y_i}{\|y_i\|}$

Target: estimate Σ^* given only x_1, \dots, x_m

MLE, aka Tyler's M-estimator:

$$\widehat{\Sigma} = \underset{\Sigma > 0, \ \det(\Sigma) = 1}{\operatorname{argmin}} \frac{d}{m} \sum_{i=1}^{m} \log(x_i^{\mathsf{T}} \Sigma^{-1} x_i)$$

Nonconvex!

Example: robust covariance estimation

iid samples $y_1, ..., y_m \in \mathbb{R}^d$ from centered Gaussian with covariance Σ^*

Normalize: $x_i = \frac{y_i}{\|y_i\|}$

Target: estimate Σ^* given only x_1, \dots, x_m

MLE, aka Tyler's M-estimator:

$$\widehat{\Sigma} = \underset{\Sigma > 0, \ \det(\Sigma) = 1}{\operatorname{argmin}} \frac{d}{m} \sum_{i=1}^{m} \log(x_i^{\mathsf{T}} \Sigma^{-1} x_i)$$

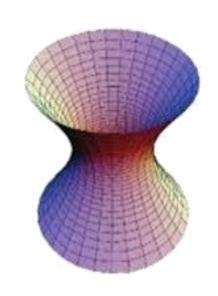
Nonconvex!

But geodesically convex on a Hadamard manifold!

Sources: Tyler, Weisel & Zhang, Franks & Moitra, etc.

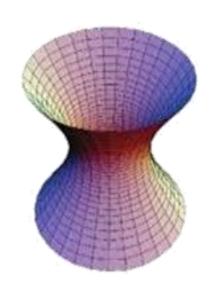
$$\min_{x \in D \subset \mathcal{M}} f(x)$$

$$\min_{x \in D \subset \mathcal{M}} f(x)$$



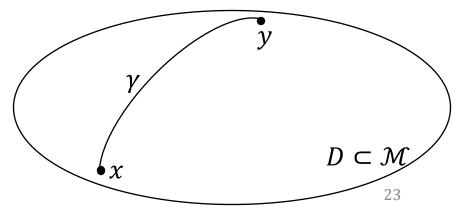
D is a g-convex subset of a Riemannian manifold \mathcal{M} :

$$\min_{x \in D \subset \mathcal{M}} f(x)$$

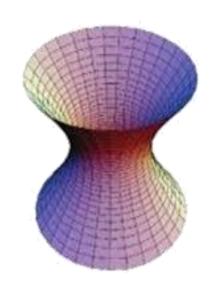


D is a g-convex subset of a Riemannian manifold \mathcal{M} :

For each $x, y \in D$, there is a unique minimizing geodesic $t \mapsto \gamma(t)$ contained in D, connecting x, y.



$$\min_{x \in D \subset \mathcal{M}} f(x)$$



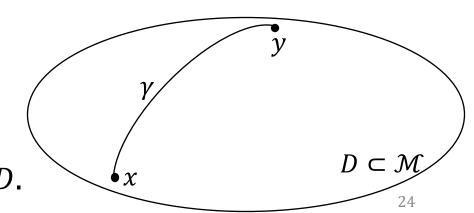
D is a g-convex subset of a Riemannian manifold \mathcal{M} :

For each $x, y \in D$, there is a unique minimizing geodesic $t \mapsto \gamma(t)$ contained in D, connecting x, y.

Cost f is μ -strongly g-convex:

$$t \mapsto f(\gamma(t))$$

is μ -strongly convex for any geodesic γ in D.

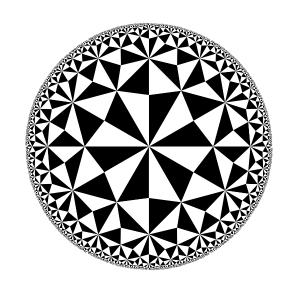


Our focus: What is the query complexity of g-convex optimization?

Our focus: What is the query complexity of g-convex optimization?

Computational task:

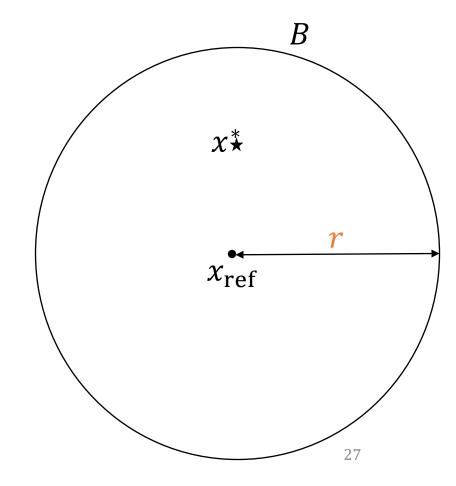
• \mathcal{M} is hyperbolic space of constant curvature K < 0



Our focus: What is the query complexity of g-convex optimization?

Computational task:

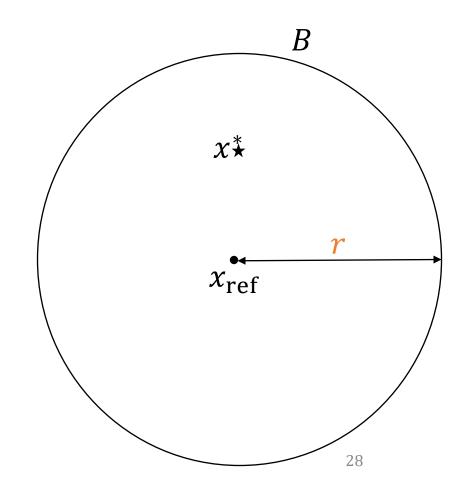
- \mathcal{M} is hyperbolic space of constant curvature K < 0
- f has a unique minimizer x^* in $B = B(x_{ref}, r)$



Our focus: What is the query complexity of g-convex optimization?

Computational task:

- \mathcal{M} is hyperbolic space of constant curvature K < 0
- f has a unique minimizer x^* in $B = B(x_{ref}, r)$
- *f* has some regularity (e.g., 1-Lipschitz/1-smooth)

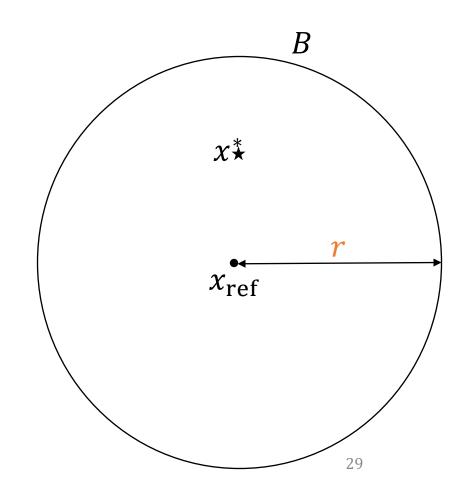


Our focus: What is the query complexity of g-convex optimization?

Computational task:

- \mathcal{M} is hyperbolic space of constant curvature K < 0
- f has a unique minimizer x^* in $B = B(x_{ref}, r)$
- *f* has some regularity (e.g., 1-Lipschitz/1-smooth)

You can query an oracle at x to get f(x), $\nabla f(x)$



Our focus: What is the query complexity of g-convex optimization?

Computational task:

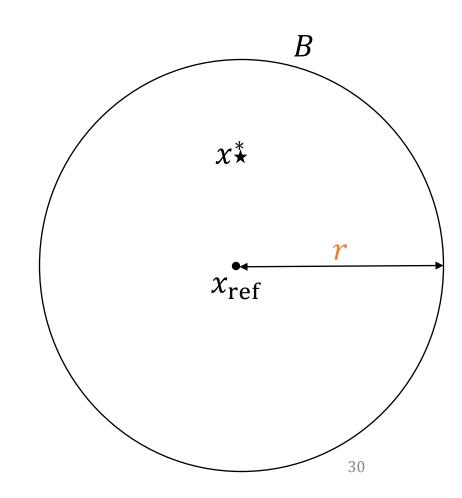
- \mathcal{M} is hyperbolic space of constant curvature K < 0
- f has a unique minimizer x^* in $B = B(x_{ref}, r)$
- *f* has some regularity (e.g., 1-Lipschitz/1-smooth)

You can query an oracle at x to get f(x), $\nabla f(x)$

Task: find a point x with accuracy ϵ :

$$f(x) - f^* \le \epsilon$$

Least number of oracle queries necessary?



Our focus: What is the query complexity of g-convex optimization?

Computational task:

- \mathcal{M} is hyperbolic space of constant curvature K < 0
- f has a unique minimizer x^* in $B = B(x_{ref}, r)$
- f has some regularity (e.g., 1-Lipschitz/1-smooth)

Complexity (i.e., min # of oracle queries) depends on two parameters:

- Accuracy *€*
- Curvature term $\zeta := 1 + r\sqrt{|K|}$

Our focus: What is the query complexity of g-convex optimization?

Complexity (i.e., min # of oracle calls) depends on two parameters:

- Accuracy *€*
- Curvature term $\zeta := 1 + r\sqrt{|K|}$

Main result: At least $\widetilde{\Omega}(\zeta)$ oracle calls are needed to find x such that

$$f(x) - f^* \le \frac{1}{100} (f(x_{\text{ref}}) - f^*)$$

Our focus: What is the query complexity of g-convex optimization?

Complexity (i.e., min # of oracle calls) depends on two parameters:

- Accuracy *€*
- Curvature term $\zeta := 1 + r\sqrt{|K|}$

Main result: At least $\widetilde{\Omega}(\zeta)$ oracle calls are needed to find x such that

$$f(x) - f^* \le \frac{1}{100} (f(x_{\text{ref}}) - f^*)$$

Builds on Hamilton & Moitra '20

Our focus: What is the query complexity of g-convex optimization?

Complexity (i.e., min # of oracle calls) depends on two parameters:

- Accuracy *€*
- Curvature term $\zeta := 1 + r\sqrt{|K|}$

Main result: At least $\widetilde{\Omega}(\zeta)$ oracle calls are needed to find x such that

$$f(x) - f^* \le \frac{1}{100} (f(x_{\text{ref}}) - f^*)$$

Why?

Builds on Hamilton & Moitra '20

Why important? Consequences?

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why?

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why?

Geodesic ball volumes grow much faster in negatively curved spaces than flat spaces.

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why?

Geodesic ball volumes grow much faster in negatively curved spaces than flat spaces.

$$K = 0$$

Constant curvature:

Euclidean space \mathbb{R}^d

Hyperbolic space \mathbb{H}^d (K = -1)

Volume of ball of radius r:

$$Vol \sim r^d = e^{d \log(r)}$$

$$Vol \sim e^{dr}$$

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why?

Geodesic ball volumes grow much faster in negatively curved spaces than flat spaces.

Curvature measures how quickly geodesics diverge

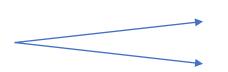
Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \leq \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

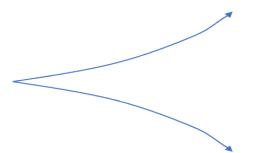
Why?

Geodesic ball volumes grow much faster in negatively curved spaces than flat spaces.

Curvature measures how quickly geodesics diverge

In negatively curved spaces, geodesics diverge rapidly, and so a small error can blow up quickly





Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \leq \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why important? Consequences?

1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

- 1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)
- 2. Rules out *full* Nesterov acceleration in negatively curved spaces

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why important? Consequences?

- 1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)
- 2. Rules out *full* Nesterov acceleration in negatively curved spaces

Riem GD has complexity $O\left(\frac{1}{\epsilon}\right)$, which seems to match convex counterpart

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \leq \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

Why important? Consequences?

- 1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)
- 2. Rules out *full* Nesterov acceleration in negatively curved spaces

Riem GD has complexity $O\left(\frac{1}{\epsilon}\right)$, which seems to match convex counterpart

Is there a Riem acceleration scheme with complexity $O\left(\frac{1}{\sqrt{\epsilon}}\right)$? No

Zhang & Sra; Ahn & Sra; Alimisis, Orvieto, Lucchi; Martinez-Rubio; Kim & Yang; etc.

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

- 1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)
- 2. Rules out full Nesterov acceleration in negatively curved spaces
- 3. Scaling problems

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

- 1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)
- 2. Rules out *full* Nesterov acceleration in negatively curved spaces
- 3. Scaling problems
 - Encompass range of applications in stats, quantum, TCS

Main result: At least $\widetilde{\Omega}(\zeta) = \widetilde{\Omega}\left(r\sqrt{|K|}\right)$ oracle calls are needed to find x such that $f(x) - f^* \le \frac{1}{100}(f(x_{\text{ref}}) - f^*)$

- 1. Explains why all known upper bounds worsen with curvature (e.g., Zhang & Sra '16)
- 2. Rules out *full* Nesterov acceleration in negatively curved spaces
- 3. Scaling problems
 - Encompass range of applications in stats, quantum, TCS
 - For tensor scaling (and others), radius r is exponentially large in input size (Franks & Reichenbach'21) so lower bound points to difficulty of finding poly-time algos

Part I: Geodesic convexity

Much more in thesis!

Part I: Geodesic convexity

Much more in thesis!

- Bounds depending on both ϵ and ζ .
- Other problem classes.

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lo- dim	$\widetilde{\Omega}(\zeta+d)$	$O(\zeta d)$	Center of gravity (Criscitiello, et al. '23)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta^2 \epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{O}\left(\sqrt{\zeta}/\epsilon\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)
Cutting-planes game	$\widetilde{\Omega}(\zeta d)$	$O(\zeta d)$	Center of gravity (Criscitiello, et al. '23)

 $\Omega\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size)

Part I: Geodesic convexity

Much more in thesis!

- Bounds depending on both ϵ and ζ .
- Other problem classes.

Open question:

Matching upper and lower bounds?

g-convex setting	Lower bound	Upper bound	Algorithm
(P1) Lipschitz, lodim	$\widetilde{\Omega}(\zeta+d)$	$O(\zeta d)$	Center of gravity (Criscitiello, et al. '23)
(P2) Lipschitz	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta^2 \epsilon^2}\right)$	$O\left(\frac{\zeta}{\epsilon^2}\right)$	Subgradient descent (Zhang & Sra'16)
(P3) Smooth	$\widetilde{\Omega}\left(\zeta + \frac{1}{\zeta\sqrt{\epsilon}}\right)$	$\tilde{o}\left(\sqrt{\zeta}/\epsilon\right)$	RNAG-C (Kim & Yang'22 / Martinez-Rubio et al.'22)
(P4) Smooth, strongly g-convex	$\widetilde{\Omega}(\zeta+\sqrt{\kappa})$	$ ilde{O}(\sqrt{\zeta\kappa})$	RNAG-SC (Kim & Yang'22 / Martinez-Rubio et al.'22)
Cutting-planes	$\widetilde{\Omega}(\zeta d)$	$O(\zeta d)$	Center of gravity
game	12(ζ <i>a</i>)	$O(\zeta u)$	(Criscitiello, et al. '23)

 $\Omega\left(\frac{\zeta}{\epsilon^2}\right)$ lower bound for subgradient descent (with Polyak step size)

Part II: Benign landscapes

Goal of thesis: beyond convex optimization in \mathbb{R}^d ?

- Q1. Special structure in nonconvex problems?
- Q2. Algorithms and how much computational resources?
- Q3. Fundamental limits?

Thesis focuses on 2 special structures:

- I. Geodesic convexity Q2 and Q3
- II. Benign landscapes Q1 (and Q2)

$$\min_{x \in \mathbb{R}^d} f(x)$$

Some problems are g-convex, but many are not!

Need a more general **structure!**

$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

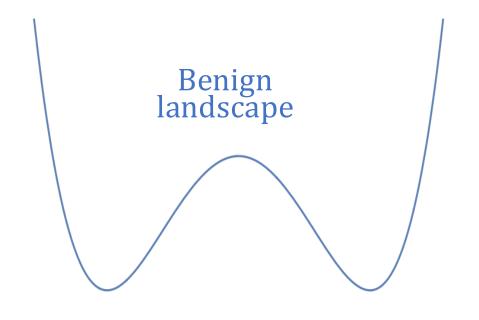
$$\min_{x \in \mathbb{R}^d} f(x)$$

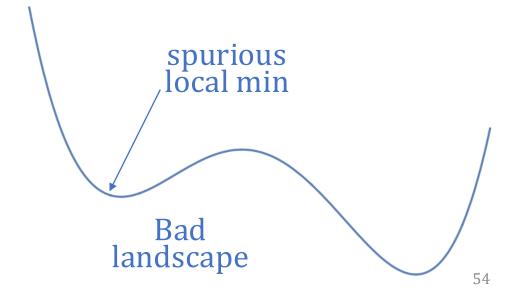
Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min





$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

Why useful?

$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

Why useful?

(strict)
saddle points
are unstable!

$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

Why useful?

Local algorithm (GD, TR, ...)

converges to 2-critical point (w/ prob 1)

(strict) saddle points are unstable!

$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

Why useful?

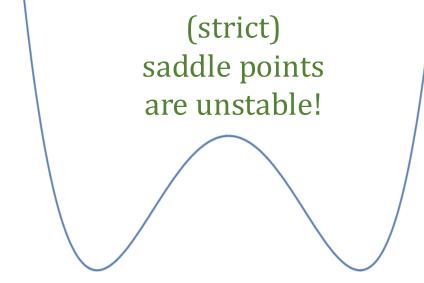
Local algorithm (GD, TR, ...)

converges to 2-critical point (w/ prob 1)

Stable manifold theorems

+

Łojasiewicz theorem



$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

Part II of thesis:

Understand when several problems have benign landscape. With an eye towards new tools.

(strict) saddle points are unstable!

$$\min_{x \in \mathbb{R}^d} f(x)$$

Definition: *f* has a **benign landscape** if all 2-critical points are optimal:

$$\nabla f(x) = 0$$
 and $\nabla^2 f(x) \ge 0$

implies

x is a global min

Part II of thesis:

Understand when several problems have benign landscape. With an eye towards new tools.

Our focus next: sensor network localization

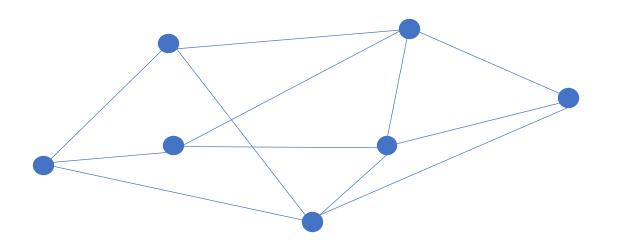
(strict)
saddle points
are unstable!

n unknown points $z_1^*, z_2^*, \dots, z_n^*$ in \mathbb{R}^{ℓ} .

n unknown points $z_1^*, z_2^*, ..., z_n^*$ in \mathbb{R}^{ℓ} .

Know a subset of the pairwise distances (measurements)

$$d_{ij} = ||z_i^* - z_j^*|| \text{ for } ij \in E.$$

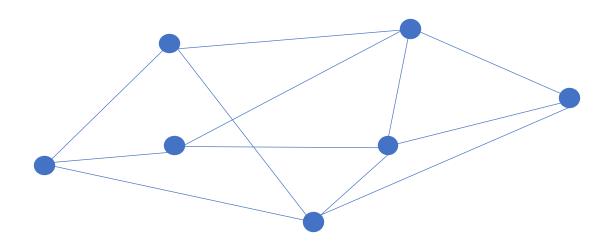


n unknown points $z_1^*, z_2^*, \dots, z_n^*$ in \mathbb{R}^{ℓ} .

Know a subset of the pairwise distances (measurements)

$$d_{ij} = ||z_i^* - z_j^*|| \text{ for } ij \in E.$$

Goal: recover the *n* points (up to translation & rotation)



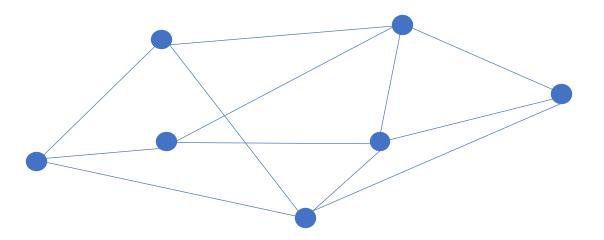
n unknown points $z_1^*, z_2^*, \dots, z_n^*$ in \mathbb{R}^{ℓ} .

Know a subset of the pairwise distances (measurements)

$$d_{ij} = ||z_i^* - z_j^*|| \text{ for } ij \in E.$$

Goal: recover the *n* points (up to translation & rotation)

Sensor network localization (SNL) – Torgerson '58, Shepard '62



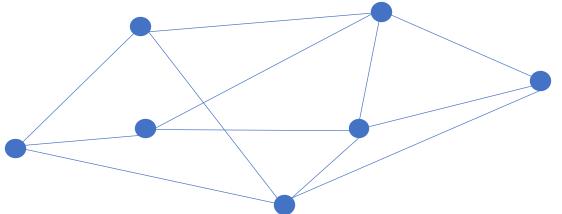
n unknown points $z_1^*, z_2^*, \dots, z_n^*$ in \mathbb{R}^{ℓ} .

Know a subset of the pairwise distances (measurements)

$$d_{ij} = ||z_i^* - z_j^*|| \text{ for } ij \in E.$$

Goal: recover the *n* points (up to translation & rotation)

Sensor network localization (SNL) - Torgerson '58, Shepard '62



Applications in robotics, determining molecular conformations, data analysis

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$
 over $z_1, z_2, \dots, z_n \in \mathbb{R}^\ell$

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell}$

Nonconvex!

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, \dots, z_n \in \mathbb{R}^{\ell}$

Relax to dimension $k > \ell$

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, ..., z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$

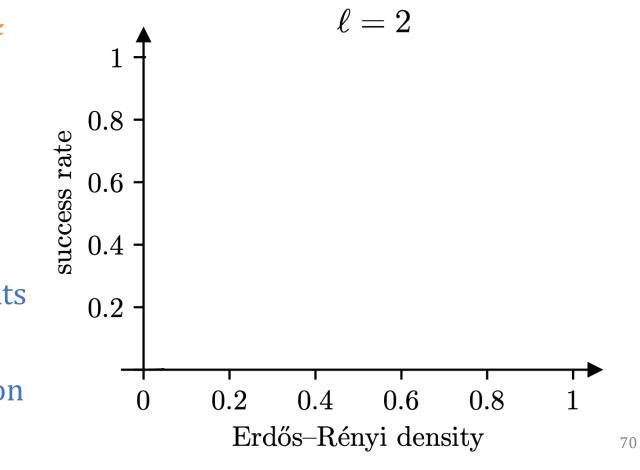
$$\min \sum_{ij\in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2,$$

over
$$z_1, z_2, \dots, z_n \in \mathbb{R}^k$$

Relax to dimension $k > \ell$

Experiment:

- n = 50, $\ell = \text{dimension} = 2$
- Ground truth = iid Gaussian points
- Graph = ER
- Run TR from random initialization



 $d_{ij} = \|z_i^* - z_j^*\|$

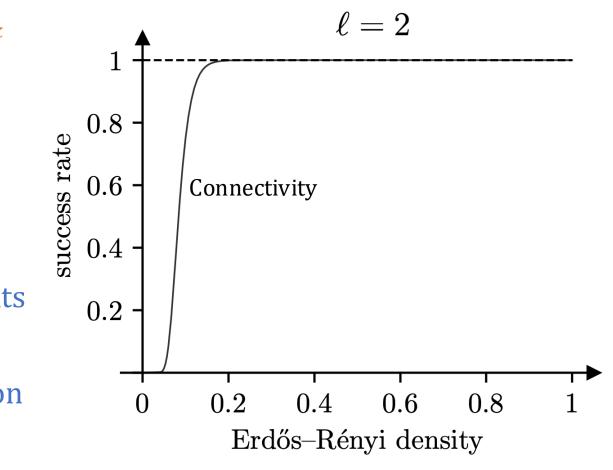
$$\min \sum_{i j \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, \dots, z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$

Experiment:

- n = 50, $\ell = \text{dimension} = 2$
- Ground truth = iid Gaussian points
- Graph = ER
- Run TR from random initialization



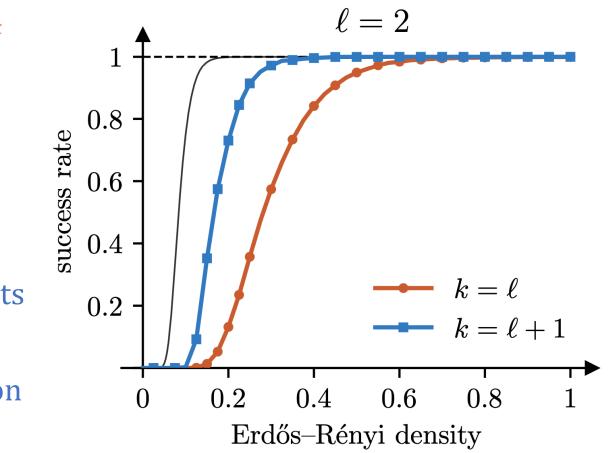
$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2$$
,

over
$$z_1, z_2, \dots, z_n \in \mathbb{R}^k$$

Relax to dimension $k > \ell$

Experiment:

- n = 50, $\ell = \text{dimension} = 2$
- Ground truth = iid Gaussian points
- Graph = ER
- Run TR from random initialization



 $d_{ij} = \|z_i^* - z_j^*\|$

Optimization problem

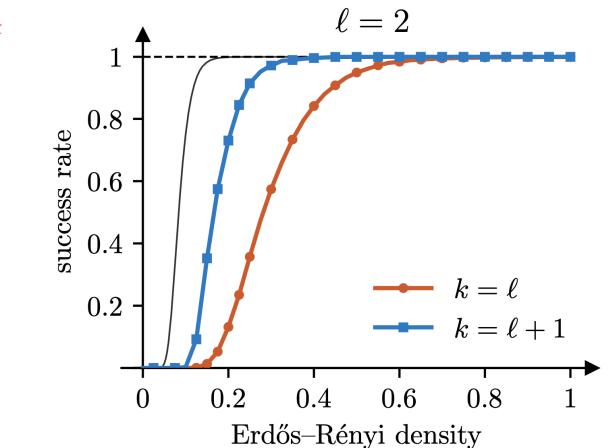
$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2$$
,

$$d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, \dots, z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$

Theoretical explanation?



Optimization problem

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over $z_1, z_2, ..., z_n \in \mathbb{R}^k$

Relax to dimension $k > \ell$

Theoretical explanation?

Want k small as possible! New problem has kn variables

If k = n - 1, landscape is benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024)

Can we do better?

Optimization problem

$$\min \sum_{ij \in E} (\|z_i - z_j\|^2 - d_{ij}^2)^2, \qquad d_{ij} = \|z_i^* - z_j^*\|$$

over
$$z_1, z_2, ..., z_n \in \mathbb{R}^k$$

Relax to dimension $k > \ell$

Theoretical explanation?

Want k small as possible! New problem has kn variables

If k=n-1, landscape is benign (Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024)

Can we do better?

Our focus: (nearly) all distances known. Landscape for s-stress and its relaxations unknown even in this simplest of cases!

$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$ over $z_1, z_2, \dots, z_n \in \mathbb{R}^k$ "s-stress"

Results

Theorem [relaxation is necessary]: If $k = \ell$ (no relaxation), landscape may

be non-benign even if graph is complete.

Also see: Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024

$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$ $\text{over } z_1, z_2, \dots, z_n \in \mathbb{R}^k$ "s-stress"

Results

Theorem [relaxation is necessary]: If $k = \ell$ (no relaxation), landscape may be non-benign even if graph is complete.

Theorem [arbitrary GT]: If graph is complete and relax to $k \approx \ell + \sqrt{n\ell}$.

then every 2-critical point is the ground truth.

Also see: Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024

$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$ $\text{over } z_1, z_2, \dots, z_n \in \mathbb{R}^k$ "s-stress"

Results

Theorem [relaxation is necessary]: If $k = \ell$ (no relaxation), landscape may be non-benign even if graph is complete.

Theorem [arbitrary GT]: If graph is complete and relax to $k \approx \ell + \sqrt{n\ell}$.

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are isotropic* and iid, and relax to

$$k \approx \ell + \log(n)$$
,

then every 2-critical point is the ground truth, w.h.p.

Also see: Song, Goncalves, Jung, Lavor, Mucherino, Wolkowicz, 2024

$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$ $\text{over } z_1, z_2, \dots, z_n \in \mathbb{R}^k$ "s-stres

Also see:

Song, Goncalves, Jung,

Lavor, Mucherino,

Wolkowicz, 2024

Results

Theorem [relaxation is necessary]: If $k = \ell$ (no relaxation), landscape may be non-benign even if graph is complete.

Theorem [arbitrary GT]: If graph is complete and relax to $k \approx \ell + \sqrt{n\ell}$.

then every 2-critical point is the ground truth.

Theorem [isotropic GT]: If graph is nearly complete*, ground truth points are isotropic* and iid, and relax to

$$k \approx \ell + \log(n)$$
,

then every 2-critical point is the ground truth, w.h.p.

Why? Why important?

Example

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$
 over $z_1, z_2, \dots, z_n \in \mathbb{R}^\ell$ "s-stress"

s-stress can have spurious strict local minima, with complete graph

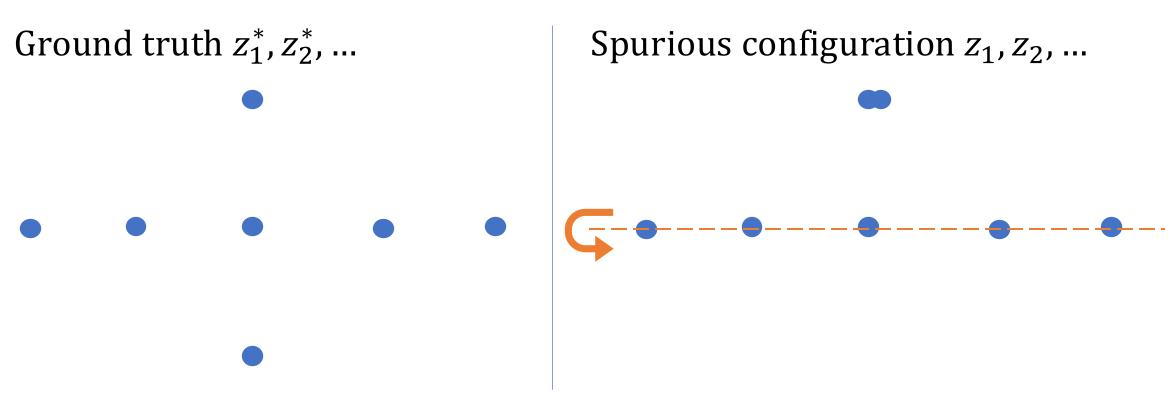
Ground truth z_1^*, z_2^*, \dots

Spurious configuration $z_1, z_2, ...$

Example

$$\min \sum_{ij \in E} \left(\left\| z_i - z_j \right\|^2 - d_{ij}^2 \right)^2, \qquad d_{ij} = \left\| z_i^* - z_j^* \right\|$$
 over $z_1, z_2, \dots, z_n \in \mathbb{R}^\ell$ "s-stress"

s-stress can have spurious strict local minima, with complete graph



Optimize over points in \mathbb{R}^3

Why important?

Why important?

First nontrivial landscape results for SNL

Why important?

First nontrivial landscape results for SNL

New mathematical techniques needed to prove benign landscape.

→ Beyond the Restricted Isometry Property

Why important?

First nontrivial landscape results for SNL

New mathematical techniques needed to prove benign landscape.

→ Beyond the Restricted Isometry Property

Another instance where low-dimensional nonconvex relaxations are successful, empirically and theoretically (Z2/orthogonal synchron: McRae/Boumal/Bandeira/... '16'23'24).

Why important?

First nontrivial landscape results for SNL

New mathematical techniques needed to prove benign landscape.

→ Beyond the Restricted Isometry Property

Another instance where low-dimensional nonconvex relaxations are successful, empirically and theoretically (Z2/orthogonal synchron: McRae/Boumal/Bandeira/...'16'23'24).

Provides a theoretical foundation for more sophisticated localization problems.

Why important?

First nontrivial landscape results for SNL

New mathematical techniques needed to prove benign landscape.

→ Beyond the Restricted Isometry Property

Another instance where low-dimensional nonconvex relaxations are successful, empirically and theoretically (Z2/orthogonal synchron: McRae/Boumal/Bandeira/...'16'23'24).

Provides a theoretical foundation for more sophisticated localization problems.

Going forward: tools for proving benign landscapes?